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Motivation

❖ Ohm's law

R =  L / S

❖ A lot of  physics behind 



Materials by design



❖ Hopping transport (e.g. disordered 

organic semiconductors relevant for 

organic cells)

❖ Band transport (crystalline 

semiconductors, e.g. silicon)

❖ Intermediate transport (emerging 

semiconductors, e.g. halide perovskites)

❖ Each of  these mechanism calls 

for a different simulation / modeling 

approach

Different charge transport mechanisms 



Hopping transport



Amorphous materials

❖ Localized electrons, move slowly.

❖ Large system calculations needed to extract transport properties.

N. Vukmirović and L. W. Wang, J. Phys. Chem. B 113, 409 (2009).



Density Functional Theory

❖ Limitation to ~100-1000 atom systems.



Overlapping fragments methods

❖ Division of  the system into (mutually 

overlapping) fragments.

▪ HOMOs (LUMOs) of  the whole syst

em linear combination of  HOMOs (

LUMOs) of  fragments.

❖ Procedure:

▪ Calculation of  fragment orbitals i

▪ Calculation of  Sij=<i|j> and Hij=

<i|H|j>

▪ Solution of  the generalized eigenvalu

e problem det(Hij-ESij)=0



Overlapping fragments methods - implementation

N. Vukmirović and L.-W. Wang, J. Chem. Phys 134, 094119 (2011).



Overlapping fragments methods - scaling

N. Vukmirović and L.-W. Wang, J. Chem. Phys 134, 094119 (2011).

⚫ Amorphous alkane system.

⚫ Runs with typically 5000 CPU c

ores.

⚫ One orbital per fragment.



Overlapping fragments methods – role of  

communication

⚫ Weak scaling test – HLRS (Stuttgart)

⚫ Cray XE6 within Cray Gemini network. 

⚫ Tests using from 256 to 16384 cores.

⚫ Weak scaling test – Curie (Paris)

⚫ Infiniband network. 

⚫ Tests using from 256 to 16384 cores.



Multiscale method for carrier transport



Temperature dependence of  mobility



Band transport



Crystalline semiconductors

❖ Delocalized electron, moves easily.

❖ Lattice vibrations slow it down and limit its mobility.

❖ One needs to calculate electron-phonon coupling constants.

❖ These are strongly varying with q, so dense grids are needed.

E
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F. Giustino et al, PRB 76, 165108 (2007).



❖ E-ph coupling elements in germanium:

❖ One needs ~40GB to store e-ph coupling elements on the course 

grid for germanium (2 atoms per unit cell)

❖ Distribution of  these elements in memory of  different nodes 

therefore necessary.

Need for large data structures

𝑎𝑛𝑚
𝑆𝛼 𝒌, 𝒒

electron momentum (~1000)electron bands (~20x20) 

phonon momentum (~1000)phonon mode (~6)

❖ Electronic states, phonon modes and e-ph coupling constants from 

ABINIT code. This is used as input to our parallel code.

02:24



Data distribution

❖ Array 𝑎𝑖 with 𝑁 elements, machine with 𝑘 cores.

𝑎1, … , 𝑎𝑁/𝑘 𝑎𝑁/𝑘+1, … , 𝑎2𝑁/𝑘 𝑎𝑁−𝑁/𝑘+1, … , 𝑎𝑁

❖ Array 𝑎𝑖𝑗 with 𝑁1𝑁2 elements, machine with 𝑘1𝑘2 cores.

𝑖 = 1, …𝑁1/𝑘1 𝑖 = 𝑁1 − 𝑁1/𝑘1 + 1,… ,𝑁1𝑖 = 𝑁1/𝑘1 + 1,… , 2𝑁1/𝑘1

𝑗 = 1,…𝑁2/𝑘2

𝑗 = 𝑁2/𝑘2 + 1,… , 2𝑁2/𝑘2

𝑗 = 𝑁2 − 𝑁2/𝑘2 + 1,… , 𝑁2

…

❖ Same approach to distribute the array 𝑎𝑖𝑗𝑘𝑙𝑚 with 𝑁1𝑁2𝑁3𝑁4𝑁5 elements, 

on a machine with 𝑘1𝑘2𝑘3𝑘4𝑘5 cores.
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Parallelization

❖ The strategy is to have all array 

elements involved in the 

computation of  FT or MM on 

the same core.

❖ To achieve this, we adopt 

redistribute – compute –

redistribute approach.

❖ mpi_alltoallv used for 

redistribution.



Scaling with system size

CRAY XE6, 
4096 cores

CRAY XE6, 
512 cores

❖ ~nat
3 scaling with system size.

❖ communication negligible.

❖ Parameters nb=2nat, 

nk=nq=216, nK=1, nQ=200

❖ Parameters nb=2nat, 

nk=nq=216, nK=1000, 

nQ=200



Scaling with number of  CPU cores

❖ linear scaling with system size on machine with infiniband

network, poor scaling with Gb Ethernet.

❖ Parameters nat=4, nb=2nat, nk=nq=216, nK=1000, nQ=200

PARADOX 4 (Infiniband) CRAY XE6, 
512 cores

PARADOX 3 (Gb Ethernet)



Temperature dependence of  mobility

❖ Mobility decreases with an increase in temperature.

❖ Example – ZnSe material, comparison with experiment.

N. Vukmirović, Phys. Rev. B 104, 085203 (2021).



Intermediate regimes



Polarons in materials

❖ Polaron formation – mixed electron-phonon states.

PNAS 119(3):e2113967119 (2022)

❖ On going project: 

Polaron Mobility in Model 

Systems and Real Materials

(PolMoReMa – 5468) 

(2024-2026).

❖ http://polmorema.ipb.ac.rs



Numerically exact approaches

❖ Direct evaluation of  current-current correlation function 

starting from the Hamiltonian of  the system.

❖ Example: Holstein model

❖ Direct diagonalization - feasible up to only ~3 sites

❖ Other approaches:

▪ Path-integral Quantum Monte Carlo

▪ Hierarchical equations of  motion

▪ Time dependent density matrix renormalization group

▪ ...

𝑛, 𝜀𝑛

𝐽
𝑔, 𝜔



Quantum Monte Carlo for mobility of  

Holstein polaron

❖ Evaluation of  integrals involving Gaussian functions using 

Monte Carlo sampling

❖ Essentially single processor code

❖ Straightforward parallelization: to obtain Monte Carlo statistics 

S. Miladić, N. Vukmirović, 

Phys. Rev. B 107, 184315 (2023).



Summary

❖ Different physics requires different algorithms even for the 

same problem of  charge transport in semiconducting material.

❖ HPC is indispensable in each case.

❖ New physical insights:

▪ HPC

▪ physical intuition

▪ algorithm and code development
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